RESURRECT CLINKER SAMPLE EXCHANGE PROGRAM

What, Why, and How

Hugh Hou, Chair, Clinker Sample Exchange Committee
Program and History

- Started in 1979
- Microscopists evaluated clinkers from same sources
- Results compiled and compared to improve the techniques and promote microscopy
- “...... review and evaluation” (Shkolnik and Hills, ICMA, 1995)
- Phased out since mid 1990s
Objectives/Goals

- Resume the program
- Recruit committee members and participants
- Get the ball rolling
- ACT
Why Participate?

- Thousands of cement manufacturers worldwide
- Frequent production / quality issues and problems
- You can help
Clinker Microscopy: Capabilities
(Campbell, 1996; Du Toit, 2017)

- Evaluate heating rate, maximum temperature, time at high temperature, and cooling rate (Ono's Method)
- Predict 28-day mortar-cube strength
- Assess cement performance / quality issues
- Assess effects of cement-plant equipment, process or raw feed changes
- Evaluate clinker grindability or efficiency of clinker-grinding process
- Determine clinker weathering during storage
Why Participate?

- See where you are and sharpen your skills
- Win raffled prizes
How to Participate

- Fill the form and return, indicating your interests:
 - Clinker sample provider
 - Microscopist
 - Chemist, QA/QC Staff
 - Committee member
 - All of above

- Bring your ideas and attend a kick-off meeting
Fill Participation Form

Name:
Affiliation:
Emails:
Phone:
Fax:

I am interested in (check one or all of them):

- Clinker sample provider
- Microscopist
- Chemist, QA/QC Staff
- Committee member
- All of above

Return to: Hugh Hou at hhou@wje.com
Questions?
ICMA SAMPLE EXCHANGE PROGRAM

<table>
<thead>
<tr>
<th>Sample No:</th>
<th>Sample Sent by:</th>
<th>Date:</th>
</tr>
</thead>
</table>

| Sample From: | | |

Ono Method:

- Alite Average Size:
- Alite Birefringence:
- Belite Average Size:
- Belite Color: % Clear: % F: % Y: % A:
- Ono Predicted Strength: PSI

<table>
<thead>
<tr>
<th>Comments:</th>
<th></th>
</tr>
</thead>
</table>

Polished Section:

- Alite Average Size:
- Alite Birefringence:
- Belite Average Size:
- Belite Birefringence:
- C3S/C3A Ratio:
- Matrix Differentiated:
- Reflectivity of Ferrites:
- Alkali Aluminates:
- Free Lime:
- Periclase:
- Pores/Grindability:
- Point Count: C3S: % C2S: % C3A: % C4AF: % F.L.: %

<table>
<thead>
<tr>
<th>Periclase: %</th>
<th>Pores: %</th>
<th>Total Points:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Comments:</th>
<th></th>
</tr>
</thead>
</table>

Thin Section:

- Alite Size: Birefringence: Morphology:
- Belite Size: Color:

<table>
<thead>
<tr>
<th>Comments:</th>
<th></th>
</tr>
</thead>
</table>

Results From:

<table>
<thead>
<tr>
<th>Address:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Date:</th>
<th></th>
</tr>
</thead>
</table>
I POLISHED SECTION METHOD (cont.)

Point Count:

- C₃S: _____%
- C₅S: _____%
- C₃A: _____%
- C₄AF: _____%

Free Lime: _____%
Precipitate: _____%
Pores: _____%

Total Points Counted:

Comments:

II THIN SECTION:

- **Alite**
 - Average Size: _____ μm
 - Birefringence:
 - Morphology:
 - (cubical, orthorhombic, subhedral, ...)

- **Belite**
 - Average Size: _____ μm
 - Color:
 - (clear, pale yellow, yellow, amber)

Lamelle Condition:

- (multidirectional, parallel, "ragged", ...)
- (round, ameboid, ...)

Crystal Distribution:

- (mostly in clusters, some in clusters, individual crystals)

Periclase

- Amount: _____%
- Morphology:
- (idiomorphic, dendritic)

Free Lime

- Amount: _____%
- Distribution:
- (tightly packed clusters, individual crystals, ...)

Interstitial/Matrix

- Reflectivity of Ferrite:
- (bright, moderate, dull)
- Alkali Aluminate Amount: _____%
- Alkaline Sulfate Amount: _____%

Porosity:

- Amount: _____%

III ONO METHOD:

- Use of KOH Extraction
 - Yes
 - No

- **Alite**
 - Average Size: _____ μm
 - Birefringence:

- **Belite**
 - Average Size: _____ μm
 - Color:
 - (Clear, Pale Yellow, Yellow, Amber)

- Predicted 28-day Compressive Strength: _____ psi

Comments: